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Abstract. A new series of unitary representations (UR) for the Lie algebra of the general 
covariant group in N-dimensional real vector space (group Diff RN) is constructed. The 
matrix representations for the generators of the algebra and the relationship between the 
UR for the group Diff RN algebra and the non-linear realisation of the group Diff RN 
algebra are found. 

1. Introduction 

The infinite-parameter Lie groups represent the basis of the numerous dynamical 
symmetries which are useful in particle physics. The general covariance in the theory 
of gravity, the isotopic transformations in the Yang-Mills theory, and the local gauge 
transformations in electrodynamics are all examples of such dynamical symmetries. 

The purpose of this paper is to examine the unitary representations (UR) of general 
covariant group algebra in N-dimensional real vector space (algebra of Diff R 
group). The transformations of the Diff RN group have the form: 

x k  = x L ( x l ,  x 2 , .  . . , X N )  (1) 
where x : ( x )  are the arbitrary differentiable functions of coordinates in the space R N ;  

moreover the transformation (1) must be invertible. The UR of the general covariant 
group in four-dimensional space-time are useful in finding the Diff RN group algebra 
at high energies, and also in constructing the renormalisable theory of gravity, etc. 

group are well known. These representations are realised by matrices which depend 
on the coordinates x,, and on the tensors which are the non-unitary representations of 
the linear group GL(N, R). The law, by the infinitesimal transformation of coor- 
dinates of the tensor components aQ ( x ) ,  is 

The finite-dimensional non-unitary representations of the algebra of the Diff R 

The matrices Twp realise the finite-dimensional representations of the group 
GL(N, R). For example, the covariant vector has components Q Q ( x )  (a: = 1,2, .  . . , N) 
and (Twp)Q6 = - iSp6Sm. The representation (2) is non-unitary, because the invariant 
scalar product does not exist. The importance of the representation (2) in physics and 
geometry is well known. 

1057 



1058 A B Borisov 

A number of papers (see the review by Vershik et a1 1975) have investigated some 
UR of the Diff R N  group. It is shown in the present paper that new series of the 
algebra of the group exist which are of interest for physical applications. They are 
defined in the infinite-dimensional space of the UR of the group GL(N, R). 

2. The unitary representations of Lie algebra of Diff RN group 

Let U be the set of functions on R N  such that the transformation 

x :  = x, + € f , ( X )  I€/<< 1 (3) 
is the infinitesimal transformation of the Diff R N  group for any f , ( x ) E  U. Let Diff R N  
denote the Lie algebra of the Diff R N  group. Let Tf and ThV, h E U )  be the elements 
of diff R N  whose differential operator representations are given by 

The Tf, Th have the following commutation relations: 

[ T ,  Th] = T, 

where the element T, behaves like the differential operator 

a a a 
ax, ax, 

h, - h,- f,) -, 

(5 1 

Let An Diff R N  be the group of analytic diffeomorphisms of R N .  First we shall find the 
UR of An Diff RN.  Let us expand arbitrary analytic functions fl of the infinitesimal 
transformation of An Diff R N :  

x :  = x , + € f : ( x ) ,  I€[<< 1 

as an infinite series in powers of the coordinates 

The coefficients of the series are the parameters of An Diff R N .  Let Tf”” be the 
element of An diff R N  where the differential representation is given by 

Then we have 
m 

n = l  
Tfan =icwP, + i  1 c , ~ ~ ~ ~ . . . ~ . F , ~ ~ ~ ~ . . . ~ ~  

where the generators P,, F,Y1Y2...Yn behave like the operators 

a a 
FIIVIY2...,. = ixV1 x,  . . . xu,-. 

ax, ax, 
P, = i-, (9) 

We note two important subalgebras of An diff R N ,  namely, the algebra sL(N, R )  of 
the special linear group SL(N, R), and the algebra c(N) of the conformal group C(N) .  
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sL(N, R )  has the basis consisting of the generators M,,, = F,,, - F,,, of the rotation 
group and the generators R,, = F,, + F,,, - (2/N)S,Jw of the special linear trans- 
formations. c(N) includes the translation generators P,,, the generators M,, and the 
generators of the scale and special conformal transformations D = F, and K ,  = 
F,, - 2F,,,. The generators of c(N) and sL(N, R )  do not generate a finite algebra. 
They generate (Ogievetsky 1973) the algebra An diff RN.  

Let us describe more fully the unitary single valued representations of SL(N, R )  
which will be used below. We shall consider SL(N, R )  as a group of N X N matrices. 
The UR of SL(N, R )  may be found by the method of induced representation (Mackey 
1963). Accordingly the Iwasawa decomposition (Helgason 1962) G = SL(N, R )  can be 
written as a product 

G = K . A . T  (10) 
where T, A and K are subgroups of G. T is a nilpotent subgroup of SL(N, R )  and its 
elements are upper triangular matrices; K = SO(N) is the maximal compact subgroup 
of SL(N, R); and A is the group of diagonal matrices (with positive elements). Let M 
be the centraliser of A in K. M is the group of all diagonal matrices with entries f 1 on 
the diagonal. The representations of the principal series are obtained as the induced 
representations on the homogeneous space G/ G',  where G' = M. A . T (Warner 
1972). There is an equivalent way of defining the representations of the principal 
series. Namely, let (T be an irreducible UR of M and H" be the set of all square- 
integrable functions on K with respect to the invariant measure dk on K such that, for 
each m EM, f ( k m )  = a ( m ) f ( k )  for every k E K. For arbitrary g E SL(N, R )  and k E K 
there exists a unique decomposition of the element gk 

gk = k, eh(gSk)t; k, E K, eh(gvk)E A ,  t E T (11) 
where h (g ,  k )  denotes an element of the Lie algebra corresponding to A.  The group A 
has the generators A I ,  A z ,  . . . , AN-1 and if t1, t 2 , .  . . , tN- l  are the corresponding 
group parameters, one has h (g,  k )  = ZEY' ti (g,  k)Ai. Let a be a linear function such 
that a(ZEY' tiAi)=Zi=l tia(Ai). It is possible then to define a representation T ( g )  
( g  E SL(N, R ) )  on H" in the following way (Harish-Chandra 1953): 

N - 1  

T k l f  (k 1 = {~XP[O ( h  ( k ,  g-'>>J}f(k,-l)(dk,-1/dk ) l I 2 .  (12) 
In Dirac bra-ket notation f(k) = ( k l f )  and the representation defined above reads 

If the linear function a takes purely imaginary values on the Lie algebra correspond- 
ing to A,  the representation (12) is unitary to the scalar product 

Let R be the set of all eigenvalence classes of unitary irreducible representations (UIR) 
of SO(N). We denote by V, the space of UIR of SO(N) for any  ER. Then an 
arbitrary function f ( k ) ( k  E SO(N)) can be written as 

where G E C, d, = dim V, and t ; ( k )  are the matrix elements of the UIR of SO(N)  on 
V,. Let pi(i = 1 , 2 , .  . . , d,) be the basis of V, such that t ; (m)=  t y ( m ) ~ 3 ~ ~  Let 
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S1, S2. . . . , Spw be the indices for which a ( m )  = tT (m)  0' = S1, . . . , $,-).Then using the 
equation: f(km) = a(m)f(k)(f(k)E H") we obtain the decomposition f(k)E H" in the 
following form: 

The representation of the principal series T(g) (12) can now be conveniently given as 
a set of matrix elements in the discrete basis I;), where (&I;) = d2/'t;(k). We obtain 

The principal series of representations do not exhaust all the UR of SL(N, R). A 
complete list of the UR of SL(N, R )  is established by Gelfand and Graev (1956). It is 
convenient however for physical applications to have the UR of SL(N, R )  in the space 
functions on SO(N). The realisation of all UR of Gelfand and Graev in the space 
functions on the maximal compact subgroup is known only for SL(2,R) 
(Bargmann 1947, Gelfand et a1 1966), and SL(3, R )  (Borisov 1974, Sijacki 1975). In 
the discrete basis Im) (m is the integer number) the UR of SL(2, R )  have the form 

T(g)lm)=C I d k f ; ~  ( k ) ( a ~ k ,  g-l))s-lfm(ke-l)lm) 

g-'k = k,-lu(k, g-'); k, kg-1 E S0(2), g E SL(2, R)  
where 

= (cos 8 -sin 8 
sin 8 cos 8 

U = diag(al1, &E A, 

fn (k) = exp in& 0 s 8 s 2 ~ .  

There are three series of UR of SL(2, R )  according to the classification of Gelfand and 
Graev (1956): the principal series (s = ip, p ER,  m = 0, f 1, f 2, . . .), the supplemen- 
tary series (- 1 < s < 1, m = 0, f 1, f 2, . . .), and the discrete series (s = 0, - 1, - 2, 

with respect to the scalar product 
. . . ; Jml= -s + 1, - s+3 , .  . .). If f(8)=Xmfm e im0 the representation (17) is unitary 

where the coefficients N(m,  s) were obtained by Bargmann (1947) in the obvious 
form. 

Let us describe three series of the UR of SL(3, R). Let Dfim(k) (k E SO(3)) be the 
rotation matrix element corresponding to an angular momentum 1, - 1 s m, n C 1. The 
UIR of SL(3, R )  are defined in the Ilnm) ( I  = 0, 1,2, . . .) basis as follows (Sijacki 1975) 

x [(21+ 1)(21'+ 1)]1/2~fim(kg)ll'n'm'). 

Here the decomposition 

kg = (k, g)k ,  ; k, k, E S0(3), a(k, g)E A, t E T 
is used and we have the following series. 
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(i) Principal series: 

1 
T L m ( k ) =  (DLm(k>*(-l)’-“Dtnm(k) (n 20) Jz 
i(p + 2 ) ~  R, i(A + 1 ) ~  R.  

(ii) Supplementary series: 
1 1 

(a  ) T n m  (k) = J3: ( D L m  (k)* (- l ) ’ -”DLnm (k )) (n 01, 

& + A  = -3+iu2, p - A  = - 1 +Si, UZ, & E R ,  1811 1; 

T n m ( k ) = J z ( D ! t m ( k ) f  (-l)l-nDLnm(k)) (n  3 no), 

@ + A  =-3+iu2, 

I 1 
( b )  

( T ~ E  R, p - A  = -no = -1, -2, . . . , n = no(mod 2) 

(iii) Multiplicity free representations: 
3 = A  = -1+iu2, & E R .  I 

T n m ( k ) =  &ohm(k), 

The representation (19) is unitary with respect to the scalar product 

where f(k) = L,,f inmdm(k) .  The coefficients p(l ,  n, p, A )  were found by Sijacki 
(1975). 

The representations (16), (17), (19) are operator-irreducible representations, i.e. 
any operator which commutes with generators of SL(N, R )  is proportional to the unit 
operator. 

For the purposes of this paper we realise the principal series of the UR of 
SL(N, R)(N > 3) and three series of UR of SL(2, R ) ,  and also three series of UR of 
SL(3, R )  on the fields YrA(x):  

T g q A ( X ) =  % ( X ) = c  (AIT(g)lA’>YrA,(g-’x), g E sL(N, R )  (21) 
A’ 

Any capital Latin index can always be replaced by: (i) a set of three lower-case indices 
(e.g. (A) = (3, (A’) = ( $ ) )  for the UR (16) of SL(N, R)(N > 3) in the 1;) basis; (ii) a set 
of three lower-case Latin indices (e.g. (A) = (lnm), (A’ = l’n’m’)) for three series of the 
UR (19) of SL(3, R )  in the Ilnm) basis; (iii) a lower-case Latin index (e.g. ( A )  = (m) ,  
(A’)= (m’)) for three series of the UR (17) of SL(2, R )  in the Im) basis. 

The representation (21) is unitary with respect to the scalar product 
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where Ge, denotes the matrix representation of generator SF,, = Fey - (l/N)&F,, 
in the discrete \A) basis. 

Let us realise generators of the conformal group on the fields {*A(x)}. Such 
realisation is essentially defined by the representation of the translation algebra. We 
consider a simple well known representation of P,: 

The dilation generator Fw commutes with the generators R,,, M,,, and therefore 

The scalar product (22) is invariant with respect to dilation if d ER.  

with generators F,, and 
It is convenient to extend SL(N, R) to the algebra of the linear group GL(N, R )  

[Fwy, Fae I = i(&BFau - &P.e 1. (27) 

Using the commutation relations 

[pa, &] = -2i(&,8,,-Ma@) (28) 

we can find the representations of the generators KB on the fields {*A(x)}.  Indeed 
using (25), (28) we obtain the following equations: 

id, (K,*h(x) - (KP,*)A(x) = - 2i((&,FW + M,,)Y)A(X 1. (29) 
Therefore 

(JL*)A(x)= - 2 x 7 ( S , J , y  +MyU)AB*B(x)+ (K(O))AB*B(x) 

where (K,(O))AB is still an undetermined constant. Finally, the commutation relations 

[F,,, Kl = iK, (31) 

require that the constant (K,(0))AB = 0. 

generators F,YIYZ., .Yn (n 2 2 ) :  
Similarly we can find a matrix ~ , , l , . . . , n  which defines a representation of the 

The commutation relations for F,,l,,,,n and P,, can be written as 
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Using (32), (33) and commutation relations 

[Fyv, F, ,,..., 1 = i(n - l)F,ul...um (34) 

(35) 

we obtain relations for ( ~ , u l . . . u , ) ~ ~ * ~ ( ~ ) :  

( ~ ~ u 1 y 2 . . . y n + l  )AB*B(x)= ( ~ , 1 ~ C L u 2 . . . u . + 1  +. . . + x ~ ~ + ~ F ~ ~  ,... un)AB*B(x). 
Therefore generators FpVl,, . , ,  have the compact form 

- 

(36) 
a a 

ax, ax, 
(Fpul...unp)A(x)=-(x,, Xu,)(F,y)AB*B(X)+iX,, * - Xun-*A(X). 

Using (8), (25) and (36) we obtain the following results. 

Theorem. The operator-irreducible unitary representation of SL(N, R )  on {*A(x)} can 
be extended to a UR (with respect to the scalar product (22)) of the Lie algebra 
An diff R of the infinitesimal transformations of the An Diff R group. The genera- 
tors F,, of the algebra gL(N, R )  act on the {*A(x)} by equations 

where the F,, are certain matrices with constant coefficients which are determined by 
the original representation of SL(N, R) and by the number d appearing in (26). An 
arbitrary element Tf"" of An diff R acts on {*A(x)} by the equations 

(38) 
a 

ax, 
where the FT;" is the coordinate-dependent matrix 

(Tf"" q)A(x) = (7.fan )ABpB (x)-f z-*A(x) 

Let us define the operator TfCfE U) on {*A(x)}: 

That Tf is a unitary representation of diff RN is straightforward 

([ r f ,  T h  ]p)A(x) = (TY *)A(x) (41) 
where 

The matrix ?=' ((?=f)AB = i(df,/dxu)(~,u)ABcan be written in another form. At every 
point RN having coordinates x, we associate to the transformation (3) the element 
AV, x )  of the group SL(N, R )  defined by the matrix {A,,,(f, x ) }  (w,  v = 1,2 ,  . . . , N )  

The Iwasawa decomposition takes place for AV, x )  and k E SO(N) 

A-'(f, x )  . k = k'(k,  A-') eh(k*A-l) f(k, A) (43) 
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where k’(k, A-’) E SO(N),e“”*-” E A ,  t (k ,  A)€ T. Then using (16), (17), (19), (23)- 
(24), (42)-(43), we obtain the matrices Ff of UR of diff RN in the following form. For 
diff R N  ( N > 3 )  

i af,, - 
x [(2Z+ 1)(21’+ I)]’”~Lm(k’(k, A))-I,,n,m,,,nm +- -(Fr,)l’n’m*.,nm ) 3 ax, 

k‘(k, A) E SO(3). 

(44c 1 
k . AV, x) = t(k,  A) . a (k ,  A) . k’(k,  A), 

Using (44) we can exponentiate the representations (40) and obtain UR of the 
Diff RNgroup. The full proof will be published elsewhere. The representation (40) for 
d = p +iiN (p E R )  is unitary with respect to the scalar product 

(q, @)=I 1 qz(x)NAB@’B(X)dNX 
A.B 

(45) 
((1 + E T f Y ,  (I + ETfP) = (Q, @I J E l C  1. 

We demonstrate the important property of the representation (40) with the concrete 
example of multiplicity free (primitive) representations of the group SL(3, R). These 
representations are realised on the fields q,,, ( x )  (- Z d n s 1, Z = 0 ,  1,2 ,  . . , a) and 

(~l*in;12),n,f,n,qf,n~(x)= [ ( l ~ n ) ( ~ * n  + I)I’’*P~,,*~(x) 

(JG3)fn,,W%W = n* fn (x )  
(46) 

where Mi = Ei&fkf. Dothan et a1 (1966) and Biedenharn et aZ (1972) suggested that 
primitive representations of group SL(3, R )  furnished an algebraic model of Regge 
poles. The linear combinations of the generators R,, form second rank irreducible 
tensor operator Qf@ = 2 ,1 ,0 ,  - 1, -2) with respect to the group SO(3) and 

( o ; ) , n , ~ w ~ ~ ~ n ~ ( x )  
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1.n + nz where C,1,2;n1,n2 is Clebsch-Gordan coefficient, u2 E R, CY = 2,0,  -2. Adding dilation 
operator F,, to sL(3, R): 

(Fyy)in,i'n'*\ITl'n'(X) = (P +%i)*ln(x) (48) 

we obtain the UR of the group GL(3, R), if p E R  and 

(0, 'U) = d3x 5 f @z(x (x 1. 
1=0 n=-1 

According to 0 2, the fields {91n(x)} form the basis of the UR of diff R 3  and 

(49) 

The operators Tf (50) have the commutation relations of diff R 3  not for real but 
complex values parameters u2, p. Let us suppose that parameters u2, p are complex 
numbers in the representation (50). Then this representation defines infinite-dimen- 
sional non-unitary representation of diff R 3 .  It is interesting to point out, that such 
non-unitary representation has the invariant subspaces for definite values of complex 
parameters u2, p. For example, if u 2  = i, p = -si the fields 'UI,,(X) transform according 
to (50) as the covariant vector. 

3. The UR of diff RN and the non-linear realisation of diff RN 

There is a close relationship between the finite-dimensional representations of 
GL(N, R )  and the non-linear realisation of GL(N, R )  symmetry (Borisov and Ogie- 
vetsky 1974, Cho and Freund 1975). In this section we find the relationship between 
the non-linear realisation of diff R 

Let us examine the non-linear realisation of diff RN so that only the sO(N) algebra 
will be represented by linear homogeneous transformations of fields. Generalising the 
method proposed by Borisov and Ogievetsky (1974), Cho and Freund (1975) we 
introduce the symmetric tensor field h,,(x) (k,  v = 1,2 ,  . . . , N ) .  The field hpY(x) is the 
gravitational field in the four-dimensional space-time (xl, x2, x3, x4 = ict). We define 
the infinitesimal transformation law of h,, under Diff R 

and UR of diff R N. 

group as follows: 

where x: =x, +ef,(x), E,, =&,+E,,, h:,(x') is the transformed field h,,, I is the 
unit matrix in the IA) basis and (exp f i h & & , ) A B  = IAB +iihwu(R&u)AB + . . .. The 
infinitesimal transformation law of field ~ A ( x )  under Diff R N  is defined as follows: 

q\Zlk(x')= (exp iu,v(h, f)awu) AB 'UB(x) (52) 

In the lowest order in E the fields h,, and U,, have the forms 
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where 

and the coefficients b,, and cmn are given by the generating functions 

X - Y  G Z ( x ,  y ) = cmnx my = tanh - 
mn 2 .  

Letting 

where f,  h E U, 7, = h,(af,/ax,)- f , (ah,/ax,) .  Hence the transformations (57) give the 
non-linear realisation of diff R N. 

It is possible to construct the functions of h,, which transform linearly. These 
quantities are represented by the squares of (exp - h),, = S,, - h,, + . . . and (exp h),, 

gwu = (exp 2h),,; 

and correspond to the contravariant and covariant metric tensors in the general 
relativity. By changing the fields q A ( x )  it is possible to introduce the linearly trans- 
formed fields q A ( x ) .  From (51) and (52) we obtain that under the action of Diff R N  
group the fields 

are transformed as follows 

The fields q A ( x )  are useful in the construction of interaction Lagrangians of h,, with 
the fields U , ( X ) .  Such Lagrangians will be discussed elsewhere. 
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